婷婷一区二区三区,91精品在线影院,国产美女在线播放,caopeng在线

芬蘭Kibron專注表面張力儀測(cè)量技術(shù),快速精準(zhǔn)測(cè)量動(dòng)靜態(tài)表面張力

熱線:021-66110810,66110819,66110690,13564362870 Email: info@vizai.cn

合作客戶/

拜耳公司.jpg

拜耳公司

同濟(jì)大學(xué)

同濟(jì)大學(xué)

聯(lián)合大學(xué).jpg

聯(lián)合大學(xué)

寶潔公司

美國保潔

強(qiáng)生=

美國強(qiáng)生

瑞士羅氏

瑞士羅氏

當(dāng)前位置首頁 > 新聞中心

蛋白質(zhì)外聚物中多糖的比例——結(jié)論、致謝!

來源:上海謂載 瀏覽 2648 次 發(fā)布時(shí)間:2021-10-12


四、結(jié)論


油和/或 Corexit 的存在會(huì)導(dǎo)致 EPS 的蛋白質(zhì):多糖比率更高,并在中胚層實(shí)驗(yàn)中降低 SFT。 在這些實(shí)驗(yàn)中,SFT 與 蛋白質(zhì):具有負(fù)斜率的 EPS 多糖。 當(dāng)開闊的海洋 水域和兩種不同的沿海水處理進(jìn)行了比較, 蛋白質(zhì)趨勢(shì):多糖為 CEWAF > DCEWAF > WAF ≥ Control 并且對(duì)于 SFT,它是相反的, CEWAF < DCEWAF < WAF ≤ 對(duì)照。 因此,SFT 與膠體 EPS 中的蛋白質(zhì):多糖比率成反比。


當(dāng)中宇宙水柱的不同尺寸分?jǐn)?shù)為 相比之下,我們發(fā)現(xiàn) EPS 膠體可以降低 SFT 蛋白質(zhì):多糖比例,表明有效的生物乳化 蛋白質(zhì)的容量。 粒子濾波中 SFT 的比較 分?jǐn)?shù) (< 0.45 μm) 和 EPS 膠體分?jǐn)?shù) (< 0.45 μm 和 > 3 kDa),對(duì)于真正溶解的部分 (< 3 kDa),它是 表明只有前兩個(gè)包含 EPS 的部分具有容量 以降低 SFT,而 < 3 kDa 級(jí)分顯示與以下相同的 SFT 純海水或只有真正溶解有機(jī)碳的海水。


顯微鏡技術(shù)(即 CLSM 和 SEM)證實(shí),正如預(yù)測(cè)的那樣,蛋白質(zhì)主要在空氣 - 水界面富集, 強(qiáng)烈影響空氣/水界面處的 SFT 治療。 這些技術(shù)還可視化了不同的聚集體尺寸 和它們的分散,以及聚集體形成的重要性 通過陰離子EPS組分部分之間的Ca2+"橋接"。 SFT 可能會(huì)發(fā)生微小的變化,與蛋白質(zhì):多糖比率的變化相吻合,這可能是 pH 值變化的原因(十分之一) 單位),如 EPS 模型化合物所示,這可能在 CMC 周圍最為突出。 此外,我們表明蛋白質(zhì)和酸性多糖的 EPS 模型成分比 Corexit 導(dǎo)致海水中膠束的自組裝甚至 當(dāng)這些成分的濃度很低時(shí)。 這個(gè) 表明 EPS 在形成方面與 Corexit 相同或更有效 乳液。 然而,關(guān)于相互作用的更系統(tǒng)的研究 不同組件的不同組合,以及更多型號(hào) 單獨(dú)的化合物,可能需要更多地闡明在我們的中宇宙實(shí)驗(yàn)中觀察到的復(fù)雜性。


致謝


這項(xiàng)研究得到了墨西哥灣的資助 支持名為 ADDOMEx 的聯(lián)盟研究的研究計(jì)劃 (微生物對(duì)分散劑和油的聚集和降解 Exopolymers) 聯(lián)盟。 原始數(shù)據(jù)可以在海灣找到 墨西哥研究倡議信息和數(shù)據(jù)合作組織 (GRIIDC) 在網(wǎng)址 https://doi.org/10.7266/N7PK0D64; https://doi.org/10。 7266/N78P5XZD; https://doi.org/10.7266/N74X568X; https://doi. org/10.7266/N79W0D1K。


參考


Angarska, J.K., Dimitrova, B.S., Danov, K.D., Kralchevsky, P.A., Ananthapadmanabhan, K.P., Lips, A., 2004. Detection of the hydrophobic surface force in foam films by measurements of the critical thickness of the film rupture. Langmuir 20, 1799–1806. https://doi.org/10.1021/la035751.


Bopp, R., Santschi, P.H., Li, Y.-H., Deck, B.L., 1981. Biodegradation and gas exchange of gaseous alkanes in model estuarine ecosystems. Org. Geochem. 3, 9–14. https://doi. org/10.1016/0146-6380(81)90007-3.


Bretherton, L., Williams, A.K., Genzer, J., Hillhouse, J., Kamalanathan, M., Finkel, Z.V., Quigg, A., 2018. Physiological response of 10 phytoplankton species exposed to Macondo oil and Corexit. J. Phycol. 54 (3), 317–328. https://doi.org/10.1111/jpy. 12625.


Burd, A.B., Jackson, G.A., 2009. Particle aggregation. Annu. Rev. Mar. Sci. 1, 65–90. https://doi.org/10.1146/annurev.marine.010908.163904.


Cai, Z., Gong, Y., Liu, W., Fu, J., O'Reilly, S.E., Hao, X., Zhao, D., 2016 Aug 15. 2016. A surface tension based method for measuring oil dispersant concentration in seawater. Mar. Pollut. Bull. 109 (1), 49–54. https://doi.org/10.1016/j.marpolbul.2016.06.028.


Chester, R., 1990. Marine Geochemistry. Unwin Hyman, Ltd, London. Chin, W.-C., Orellana, M.V., Verdugo, P., 1998. Spontaneous assembly of marine dissolved organic matter into polymer gels. Nature 391, 568–572. https://doi.org/10. 1038/35345.


Chiu, M.-H., Garcia, S.G., Hwang, B., Claiche, D., Sanchez, G., Aldayafleh, R., Tsai, S.-M., Santschi, P.H., Quigg, A., Chin, W.-C., 2017. Corexit, oil and marine microgels. Mar. Pollut. Bull. 122, 376–378. https://doi.org/10.1016/j.marpolbul.2017.06.077.


da Cruz, G.F., Angolini, C.F.F., dos Santos Neto, E.V., Loh, W., Marsaioli, A.J., 2010. Exopolymeric substances (EPS) produced by petroleum microbial consortia. J. Braz. Chem. Soc. 21 (8), 1517–1523. https://doi.org/10.1590/S0103- 50532010000800016.


Decho, A.W., 2000. Microbial biofilms in intertidal systems: an overview. Cont. Shelf Res. 20, 1257–1273. https://doi.org/10.1010/S0278-4343(00)00022-4.


Doyle, S.M., Whitaker, E.A., De Pascuale, V., Wade, T.L., Knap, A.H., Santschi, P.H., Quigg, A., Sylvan, J.B., 2018. Rapid formation of microbe-oil aggregates and changes in community composition in coastal surface water following exposure to oil and corexit. Front. Microbiol. 1–16. https://doi.org/10.3389/fmicb.2018.00689. Emerson, S., Hedges, J., 2008. Chemical Oceanography and the Marine Carbon Cycle. Cambridge University Press, Cambridge, UK. Ghosh, A.K., Bandyopadhyay, P., 2012. Polysaccharide-protein interactions and their relevance in food colloidsa. In: Intech Open Science, https://doi.org/10.5772/50561. Guo, L., Coleman Jr., C.H., Santschi, P.H., 1994. The distribution of colloidal and dissolved organic carbon in the Gulf of Mexico. Mar. Chem. 45, 105–119. https://doi. org/10.1016/0304-4203(94)90095-7.


Gutierrez, T., Shimmield, T., Haidon, C., Black, K., Green, D.H., 2008. Emulsifying and metal ion binding activity of a glycoprotein exopolymer produced by Pseudoalteromonas sp. Strain TG12. Appl. Environ. Microbiol. 4867–4876. https:// doi.org/10.1128/AEM.00316-08.


Han, X., Wang, Z., Chen, M., Zhang, X., Tang, C.Y., Wu, Z., 2017. Acute responses of microorganisms from membrane bioreactors in the presence of NaOCl: protective mechanisms of extracellular polymeric substances. Environ. Sci. Technol. 51, 3233–3241. https://doi.org/10.1021/acs.est.6b05475.


Hatcher, P.G., Obeid, W., Wozniak, A.S., Xu, C., Zhang, S., Santschi, P.H., Quigg, A., 2018. Identifying oil/marine snow associations in mesocosm simulations of the deep water horizon oil spill event using solid-state 13C NMR spectroscopy. Mar. Pollut. Bull. 126, 159–165. https://doi.org/10.1016/j.marpolbul.2017.11.004.


Hung, C.-C., Santschi, P.H., 2001. Spectrophotometric determination of total uronic acids in seawater using cation exchange separation and pre-concentration lyophilization. Anal. Chim. Acta 427, 111–117. https://doi.org/10.1016/S0003-2670(00)01196-X.


Hung, C.-C., Guo, L., Schultz, G., Pinckney, J.L., Santschi, P.H., 2003. Production and fluxes of carbohydrate species in the Gulf of Mexico. Glob. Biogeochem. Cycles 17 (2), 1055. https://doi.org/10.1029/2002GB001988. Kamalanathan, M., Schwehr, K.A., Bretherton, L.J., Genzer, J., Hillhouse, J., Xu, C., Williams, A., Santschi, P.H., Quigg, A., 2018. Diagnostic tool to ascertain marine phytoplankton exposure to chemically enhanced water accommodated fraction of oil using Fourier Transform infrared spectroscopy. Mar. Pollut. Bull. 130, 170–178. https://doi.org/10.1016/j.marpolbul.2018.03.027.


McClements, D.J., 2011. Edible nanoemulsions: fabrication, properties, and functional performance. Soft Matter 7, 2297–2316. https://doi.org/10.1039/C0SM00549E. Millero, F.J., 1996. Chemical Oceanography. CRC Press, Boca Raton, FL, pp. 469. Morris, D.L., 1948. Quantitative determination of carbohydrates with Dreywood's anthrone reagent. Science 107, 254–255.


Padday, J.F., Pitt, A.R., Pashley, R.M., 1975. Menisci at a free liquid surface: surface tension from the maximum pull on a rod. J. Chem. Soc., Faraday Trans. 1 71, 1919–1931. https://doi.org/10.1039/F19757101919.


Passow, U., Hetland, R.D., 2016. What happened to all of the oil? Oceanography 29, 88–95. https://doi.org/10.5670/oceanog.2016.73.


Pletikapic, G., Lannon, H., Murvai, U., Kellermayer, M.S.Z., Svetlicic, V., Brujic, J., 2014. Self-assembly of polysaccharides gives rise to distinct mechanical signatures in marine gels. Biophys. J. 107, 355–364. https://doi.org/10.1016/j.bpj.2014.04.065.


Prairie, J.C., Ziervogel, K., Camassa, R., McLaughlin, R.M., White, B.L., Dewald, C., Arnosti, C., 2015. Delayed settling of marine snow: Effects of density gradient and particle properties and implications for carbon cycling. Mar. Chem. 175, 28–38. https://doi.org/10.1016/j.marchem.2015.04.006.


Quigg, A., Passow, U., Chin, W.-C., Xu, C., Doyle, S., Bretherton, L., Kamalanathan, M., Williams, A.K., Sylvan, J.B., Finkel, Z.V., Knap, A.H., Schwehr, K.A., Zhang, S., Sun, L., Wade, T.L., Obeid, W., Hatcher, P.G., Santschi, P.H., 2016. The role of microbial exopolymers in determining the fate of oil and chemical dispersants in the ocean. Limnol. Oceanogr. Lett. 1, 3–26. https://doi.org/10.1002/lol2.10030.


Santschi, P.H., 2017. Texas A&M University Introduces Exopolymeric Substances as Agents in Enhancing the Self-Cleansing Capacity of Natural Waters. American Exopolymerics Science & Technology 25 feature article. http://www. paneuropeannetworks.com/special-reports/american-exopolymerics/. Sharqawy, M.H., Lienhard, J.H., Zubair, S.M., 2010. Thermophysical properties of seawater: a review of existing correlations and data. Desalin. Water Treat. 16, 354–380. https://doi.org/10.5004/dwt.2010.1079.


Smith, P.K., Krohn, R.I., Hermanson, G.T., Mallia, A.K., Gartner, F.H., Provenzano, E.K., Fujimoto, E.K., Goeke, N.M., Olson, B.J., Klenk, D.C., 1985. Measurement of protein using bicinchoninic acid. Anal. Biochem. 150, 76–85. https://doi.org/10.1016/0003- 2697(85)90442-7.


Sun, L., Xu, C., Zhang, S., Lin, P., Schwehr, K.A., Quigg, A., Chiu, M.-H., Chin, W.-C., Santschi, P.H., 2017. Light-induced aggregation of microbial exopolymeric substances. Chemosphere 181, 675–681. https://doi.org/10.1016/j.chemosphere.2017. 04.099.


Tako, M., 2015. The Principle of Polysaccharide Gels. Adv. Biosci. Biotechnol. 6, 22–36. https://doi.org/10.4236/abb.2015.61004.


Tcholakova, S., Denkov, N.D., Lips, A., 2008. Phys. Chem. Chem. Phys. 10, 1608–1627. Tsai, S.M., Bangalore, P., Chen, E.Y., Lu, D., Chiu, M.H., Suh, A., Gehring, M., Cangco, J.P., Garcia, S.G., Chin, W.C., 2017. Graphene-induced apoptosis in lung epithelial cells through EGFR. J. Nanopart. Res. 19, 262–275. https://doi.org/10.1007/s11051- 017-3957-9.


Verdugo, P., Santschi, P.H., 2010. Polymer dynamics of DOC networks and gel formation in seawater. Deep Sea Res. II 57, 1486–1493. https://doi.org/10.1016/j.dsr2.2010. 03.002.


Verdugo, P., Alldredge, A.L., Azam, F., Kirchman, D.L., Passow, U., Santschi, P.H., 2004. The oceanic gel phase: a bridge in the DOM-POM continuum. Mar. Chem. 92, 67–85. https://doi.org/10.1016/j.marchem.2004.06.017.


Wade, T.L., Sweet, S.T., Sericano, J.L., Guinasso Jr., N., Diercks, A.-R., Highsmith, R.C., Asper, V.L., Joung, D., Shiller, A.M., Lohrenz, S.E., Joye, S.B., 2011. Analyses of water samples from the deepwater horizon oil spill: documentation of the sub-surface plume. In: Liu, Y. (Ed.), Monitoring and Modeling the Deepwater Horizon Oil Spill: A Record-Breaking Enterprise, Geophysical Monograph Series. Vol. 195. AGU, Washington, D. C, pp. 77–82.


Wade, T.L., Morales-McDevitt, M., Bera, G., Shi, D., Sweet, S., Wang, B., Gold-Bouchot, G., Quigg, A., Knap, A.H., 2017. A method for the production of large volumes of WAF and CEWAF for dosing mesocosms to understand marine oil snow formation. Marine Heliyon 3, e00419. https://doi.org/10.1016/j.heliyon.2017.e00419.


Wang, L., Yoon, R.-H., 2004. Hydrophobic forces in the foam films stabilized by sodium dodecyl sulfate: effect of electrolyte. Langmuir 20, 11457–11464. https://doi.org/10. 1021/la048672g.


Warszynski, P., Barzyk, W., Lunkenheimer, K., Fruhner, H., 1998. Surface tension and surface potential of Na n-dodecyl sulfate at the air-solution interface: model and experiment. J. Phys. Chem. B 102, 10948. https://doi.org/10.1021/jp983901r. Xu, C., Zhang, S.J., Chuang, C.Y., Miller, E.J., Schwehr, K.A., Santschi, P.H., 2011. Chemical composition and relative hydrophobicity of microbial exopolymeric substances (EPS) isolated by anion exchange chromatography and their actinide-binding affinities. Mar. Chem. 126, 27–36. https://doi.org/10.1016/j.marchem.2011.03.004.


Xu, C., Zhang, S., Beaver, M., Wozniak, A., Obeid, W., Lin, Y., Wade, T.L., Schwehr, K.A., Lin, P., Sun, L., Hatcher, P.G., Kaiser, K., Chin, W.-C., Chiu, M.-H., Knap, A., Kopp, K., Quigg, A., Santschi, P.H., 2018a. Decreased sedimentation efficiency of petro-carbon and non-petro-carbon caused by water-accommodated-fraction (WAF) and Corexitenhanced water-accommodated-fraction (CEWAF) in a coastal microbial communityseeded mesocosmt. Mar. Chem. https://doi.org/10.1016/j.marchem.2018.09.002.


(In press). Xu, C., Zhang, S., Beaver, M., Lin, P., Sun, L., Doyle, S.M., Sylvan, J.B., Wozniak, A., Hatcher, P.G., Kaiser, K., Yan, G., Schwehr, K.A., Lin, Y., Wade, T.L., Chin, W.-C., Chiu, M.-H., Quigg, A., Santschi, P.H., 2018b. The role of microbially-mediated exopolymeric substances (EPS) in regulating Macondo oil transport in a mesocosm experiment. Mar. Chem. https://doi.org/10.1016/j.marchem.2018.09.005. (In press).


Z?ncker, B., Bracher, A., R?ttgers, R., Engel, A., 2017. Variations of the organic matter composition in the sea surface microlayer: a comparison between open ocean, coastal, and upwelling sites off the Peruvian coast. Front. Microbiol. 8, 2369. https:// doi.org/10.3389/fmicb.2017.02369.



蛋白質(zhì)外聚物中多糖的比例——摘要、簡(jiǎn)介

蛋白質(zhì)外聚物中多糖的比例——方法

蛋白質(zhì)外聚物中多糖的比例——結(jié)果與討論

蛋白質(zhì)外聚物中多糖的比例——結(jié)論、致謝!

婷婷一区二区三区,91精品在线影院,国产美女在线播放,caopeng在线
国产精品一级黄| 国产精品一级二级三级| 美女视频免费一区| 777午夜精品视频在线播放| 婷婷久久综合九色综合绿巨人| 一本大道av伊人久久综合| 亚洲三级视频在线观看| 91精品1区2区| 日本女优在线视频一区二区| 精品国产91久久久久久久妲己| 国内精品嫩模私拍在线| 欧美国产精品一区| 在线亚洲免费视频| 九九精品视频在线看| 久久久精品tv| 色视频欧美一区二区三区| 免费人成精品欧美精品| 国产精品久久影院| 91精品国产手机| 成人黄色av电影| 免费久久精品视频| 欧美三级电影一区| 国内外精品视频| 亚洲高清视频在线| 久久久久久久精| 欧美色欧美亚洲另类二区| 精品中文字幕一区二区| 亚洲摸摸操操av| 欧美成人三级电影在线| 日本韩国欧美三级| 国产v日产∨综合v精品视频| 午夜精品成人在线视频| 中文字幕在线观看一区二区| 日韩欧美一区二区久久婷婷| 一本久久精品一区二区| 国产精品 日产精品 欧美精品| 亚洲成人av在线电影| 欧美激情一区三区| 日韩免费高清av| 欧美色手机在线观看| 国产麻豆成人传媒免费观看| 日韩美女久久久| 久久久五月婷婷| 欧美大度的电影原声| 欧美专区日韩专区| 91亚洲精华国产精华精华液| 国内精品第一页| 日本视频在线一区| 日韩和欧美一区二区三区| 亚洲综合免费观看高清完整版 | 久久麻豆一区二区| 欧美一二三区在线| 欧美精品久久一区| 欧美日韩国产片| 在线免费亚洲电影| 色哟哟一区二区在线观看| www..com久久爱| 成人理论电影网| 国产iv一区二区三区| 国产一区二区三区在线观看免费视频 | 97se亚洲国产综合在线| 国产乱码精品一区二区三| 久久99久久99小草精品免视看| 天天综合网天天综合色 | 中文字幕精品一区二区三区精品| xnxx国产精品| 亚洲国产成人在线| 国产精品国产三级国产aⅴ入口| 久久久亚洲精品一区二区三区 | 色激情天天射综合网| 99国内精品久久| 色拍拍在线精品视频8848| 欧洲日韩一区二区三区| 欧美性生活久久| 欧美丰满嫩嫩电影| 欧美tk—视频vk| 日本一区二区三区dvd视频在线| 欧美高清一级片在线观看| 欧美激情综合网| 亚洲欧美日韩久久| 婷婷综合久久一区二区三区| 日韩国产精品久久久久久亚洲| 青青草97国产精品免费观看| 国内精品伊人久久久久影院对白| 国产做a爰片久久毛片| 懂色av噜噜一区二区三区av| 一本高清dvd不卡在线观看| 4438x亚洲最大成人网| 国产亚洲一二三区| 亚洲愉拍自拍另类高清精品| 美女在线观看视频一区二区| 不卡视频一二三| 欧美日韩中文精品| 精品99999| 日韩美女视频19| 免费的成人av| 色久综合一二码| 26uuu色噜噜精品一区| 中文字幕色av一区二区三区| 无码av免费一区二区三区试看| 老司机免费视频一区二区三区| 成人av在线观| 欧美一区二区在线视频| 最新国产精品久久精品| 日韩高清电影一区| 99视频精品免费视频| 91精品国产丝袜白色高跟鞋| 亚洲视频网在线直播| 国产乱码字幕精品高清av| 欧美性猛交xxxx乱大交退制版| 精品国产第一区二区三区观看体验 | 奇米在线7777在线精品| av中文字幕不卡| 欧美大尺度电影在线| 亚洲天堂网中文字| 国产东北露脸精品视频| 日韩欧美电影在线| 69堂亚洲精品首页| 国产精品国产三级国产普通话三级| 精品国产自在久精品国产| 亚洲人成精品久久久久| 成人美女视频在线看| 成人av资源站| 欧美一区二区不卡视频| 亚洲图片你懂的| 亚洲一区电影777| 欧美日韩午夜在线视频| 欧美午夜在线一二页| 国产精品卡一卡二| 久久精品72免费观看| 91视视频在线直接观看在线看网页在线看 | 99久久精品免费观看| 国产日韩欧美电影| 国产自产2019最新不卡| 欧美va亚洲va国产综合| 蜜臀av一区二区| 日韩一卡二卡三卡四卡| 日本欧美在线看| 精品蜜桃在线看| 蜜臂av日日欢夜夜爽一区| 欧美电影免费观看高清完整版 | 欧美精品一区男女天堂| 精品一区二区三区视频| 久久综合成人精品亚洲另类欧美| 日韩福利电影在线| 精品少妇一区二区三区| 国产成人精品www牛牛影视| 国产日韩精品一区| 91原创在线视频| 亚洲一区中文日韩| 欧美一级高清片| 国精产品一区一区三区mba桃花| 国产欧美日韩不卡| 一本到不卡精品视频在线观看 | 在线观看91av| 国产盗摄一区二区三区| 色婷婷亚洲精品| 图片区小说区区亚洲影院| 亚洲国产精品二十页| 奇米影视7777精品一区二区| 国产成人亚洲综合a∨猫咪| 337p亚洲精品色噜噜噜| 一区二区三区日韩精品| 波多野结衣中文字幕一区二区三区| 亚洲国产精品久久久久秋霞影院| 99久久婷婷国产| 亚洲日本丝袜连裤袜办公室| 正在播放亚洲一区| 天天爽夜夜爽夜夜爽精品视频| 精品视频在线免费看| 天天操天天干天天综合网| 欧美国产在线观看| 99精品黄色片免费大全| 国产精品久久久久aaaa| 欧美性色aⅴ视频一区日韩精品| 老司机精品视频一区二区三区| 欧美一级xxx| 国产老女人精品毛片久久| 中文字幕欧美日韩一区| 日韩欧美一二三四区| 极品美女销魂一区二区三区 | 北岛玲一区二区三区四区| 国产精品成人免费在线| 亚洲免费视频中文字幕| 久久久精品日韩欧美| www.欧美日韩| 亚洲一区av在线| 欧美性xxxxx极品少妇| 大胆欧美人体老妇| 亚洲成人高清在线| 欧美极品xxx| 2023国产一二三区日本精品2022| www.欧美日韩| 久久99日本精品| 国产精品国产三级国产普通话三级 | 欧美日韩综合色| 精品影院一区二区久久久| 国产精品久久久久aaaa| 国产精品高潮久久久久无| 日韩精品在线看片z|